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A formula is proposed for extrapolating from data taken at low or moderate pressures to
the high pressures that exist in the interior of the earth and planets. The formula, which
predicts the curve of reduced volume v/v, versus reduced pressure P = p/K,, follows from
integration of the following assumed expression for the pressure derivative of the bulk
modulus KX = —v dp/dv

(K, — m) \
(P + ao)°

When m = K¢, the formula reduces to the well-known Murnaghan relation, which is itself ‘
remarkably successful. In general, there is an improvement on the Murnaghan relation be-
cause the above expression allows the derivative to change from its initial value Ko to a
more realistic value m as P — . The Keane equation, d(K/K.)/dP = m + (Ky — m)/
(K/K,), has this same property, but with the disadvantage of behaving unreasonably if
Ks < 0. To apply our formula, Ky is determined from low-pressure ultrasonic data (0 to
: 6 kb), m is fixed at some reasonable value, and the remaining parameter is then determined
i by trial and error to fit the high-pressure data that are available. Rough estimates of the
{ initial value of the second pressure derivative of the bulk modulus can be obtained in this
way. As examples, the formula is fitted to experimental data that are already in the litera-
ture on aluminum oxide, a-quartz, magnesium, potassium, sodinm, and lead.

d(K/Ko)/dP = m +

P ——— o
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INTRODTCTION K/ its first pressure derivative evaluated at

zero pressure, and m the value of the first pres-

sure derivative in the limit as K — o0. Ander-

son’s recommendation is to determine K, and K,/

from ultrasonic data taken at low pressures, and

m from shock wave data at higher pressures.

This procedure gives an excellent fit to the

available experimental data. Whenever K" and ¥
m are both positive, the extrapolation behaves 1
reasonably on the entire range P > 0. However,

if K, is negative, the Keane equation predicts

unreasonable behavior in that it forces K to go

to zero at some positive pressure.

A few years ago, Anderson [1966] emphasized
‘hat the extrapolation formula of M urnaghan
10447, which is based on the assumption of a
!mear pressure dependence of the bulk modulus,
s remarkably successful in predicting the vol-
ume of a solid at high pressures. More recently,
tnderson [1968] pointed to the need for an
, mproved formula and recommended the Keane
‘ squation [Keane, 1954]. In the present paper,
we give a formula that has the advantage of the
Keane equation while incorporating an addi-
‘inal parameter for increased flexibility.

The Keane equation can be obtained by inte-
Zration from

K, — m

d(K/K,) _
- K/K, o)

dP m &

shere P = p/K,, p being the pressure, K is
e bulk modulus, K, its value at zero pressure,
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There is a class of materials, mainly certain
glasses, where R, is nezative, although dK/dp
becomes positive and behaves normally at suffi-
ciently high pressures. This class includes vitre-
ous silica [MeSkimin as cited by Anderson,
19617, obsidian [Manghnani et al., 1968], ger-
mania glass [Soga, 1969], and vyeor [Mangh-
nani and Benzing, 1969]. The previous extra-
polation formulas do not handle this class at all.

The present proposal is to take
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d(K/Ku) _ az(Kol — m)
P - "T TP ra 2
- We assume, with Anderson, that K, and K will

be determined from ultrasonic measurements at
low or moderate preszures. We require m > 0
and a > 0. By appropriate choice of the posi-
tive parameters a and m, the resulting pressure-
volume relation can be made to fit the data
and at the same time predict reasonable be-
havior on the entire range P > 0, even when
Ky < 0. If m = K/, both this relation and
Keane’s reduce to Murnaghan’s formula.

Equation 2 is only one of many possibilities
of functions that would be suitable. A few other
possibilities are noted in Appendix A. There is
no strong reason for choosing equation 2 over
the others. In this connection, it should be em-
phasized that the pressure-volume relation in
the range of available data is relatively insensi-
tive to departures of the bulk modulus K(P)
from its initial tangent. The initial tangent to
the curve K(P) versus P can be obtained
rather precisely, but it would be wrong to attach
any great significance to a function K (P) simply
because the resulting pressure-volume relation
agrees with the available data.

CHOICE OF PARAMETERS
By differentiation of equation 2,
d2(K/K,,) _ _2a2(K0' — m)
dP* (P + o

Defining C' to be the value of this derivative
at P = 0, we obtain

2(K,) — m)
JAE = m)

Here K,” is the value of &°K/dp* at p = 0. We
have required @ > 0 and m > 0 in order to
obtain reasonable behavior on P > 0. Since
a > 0, C and [KY — m] must be of opposite
sign. This means that m > KJ if ¢ > 0 and
m < K/if C <0.

Now m iz the value of dK/dp in the limit as
p — oo. Since this limit can never be attained
experimentally, we are free to choose any m > 0
that fits the available data. However, some
theoretical guidance is provided by the theory
of solids. For example, Landau and Lifshitz
[1958] state that for a sulficiently compressed
substance, the effect of the interaction of its

C = KOKOI, =
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atomic electrons with the nueclei becomes in..
nificant, and the substance may be regarde|

a degenerate perfect Fermi electron gus, 1 .
which the value of dK/dp in the nonrelatiyvi.-,
and extreme relativistic approximations is 3
and 4/3, respectively. It should be noted 1} -
these values apply only at extremely high pr.
sures. According to the same source, the vy,
5/3 is for 107 atm > p > 5 X 10°2'° 4.
where Z is some average atomic number of ],
substance, whereas the value 4/3 is for p > 10
atm. For sodium (Z = 11) the inequality f -
the value 5/3 becomes 107 > p > 15 X Iu
atm. This range is far above the range of an:
experimental data and probably even above 1},
range where extrapolations are needed! Tl
highest value of pressure found in compiling tl;
present comparisons is a shock wave point
1.5 x 10° atm for aluminum oxide. Birc/
[1963] has estimated the pressure at the center
of the earth to be of the order of 3.4 Mb. In
general, it iz considered normal for dK/dp 10
decrease slowly in a monotone fashion as the
pressure increases. Equation 2 provides the
monotone behavior, but the leveling off o
dK/dp to within a few per cent of the value m
takes place at pressures p of the order of 10ak..
which, for reasonable values of a, is very low
compared with 10" atm. Therefore, in order to
simulate the expected behavior over the pris-
sure range where the extrapolation is desired, it
is not unlikely that the best m to use in equi-
tion 2 should be substantially larger than 5 3
This is not a very sensitive point, however, sinee
the parameter a (or C) remains undetermincid.
and the initial value of the second derivative.
given by equation 3, can still be adjusted by
proper choice of a.

The values of the first two pressure derivi-
tives of the bulk modulus at P = 0 and thr
limiting value of the first derivative as P — *
may be matched to the corresponding value

from the Keane equation by using the same

values of Ky and m in the two equations an!
settine @ = 2/K/, or, equivalently,
—K/(K, — m). A similar match to the Birch
equation with K,/ = 1 [Birch, 1938, 1952,
requires m = 7,3 and C = —35/9, wherew
for K/ 5% 4, a match requires m = 3 und
(=—K"*+ 7K/ —143 0.

In the compurisons to be presented here, w*
arbitrarily chose m = 35 3 when C < 0, an
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- (" and K, both positive we used 1.00

B C
2K, — (200"
“is expression was obtained as an approxima-
n to the smallest value of m that allowed K
. fall to zero on —a < P < 0, assuming
" & K, The condition that K drop con- 050
anonsly to zero on P < 0 may be regarded as  ©
1 ‘instability’ condition. It is satisfied auto- o
irically whenever Ky > 0 and C < 0. It is
+ considered essential for the purpose of extra- i
Jating on P > 0, but in the absence of any
sher guidance, it seemed to be a reasonable
witerion for relating the two adjustable param-
worz, say moand C, when K, and C are both
ssitive. The idea that m should be near the
mallest value that allows this instability fol-
ws from the feeling that the condition m >
X/, needed to avoid a singularity on P > 0 in
s case, is likely to give an m that is already
w large to be a correct limiting value of
‘K/dp as p = <.
When Ky < 0, as for vitreous silica, many

m — K, (4) . VITREOUS SILICA

075

4
Ko =-65

-025L_ 1 | |
(o} 0.5 1.0 1.5 2.0
P/ Ko

Fig. 1. Determining the value of C that en-
sures reasonable behavior of K on p > 0 for the

anomalous case, vitreous silica (Ko < 0) (see
text).

¢ ormulas ineluding those of Murnaghan and

ieane necessarily predict an instability (K <
" on P > 0. Although this may not be a great
itastrophe, and could even be represented as
iil)'zmtageous (because an actual material with Az an abbreviation n equation 2, It A =
a < ,O could be presurged tq undergo a phgse a(K, — m). Then the integral of equation 2 is
‘mansition, through which the extrapolation
Zould not be continued analytically), it is in- K . dP
rresting to note that the present formula allows r'o =—Vygp=l+4d+mP—-
2eh an instability to be avoided by choosing
. sufficiently high positive value for C. This @
- illustrated in Figure 1, which shows K/K, where the constant of integration has been
wrsus P for three different values of €' with determined to make K = K, at P = 0. From
K/ = —6.5 and m = 1. The value K/ = —6.5 (7)
nplies to vitreous silica [MeSkimin as cited by
tnderson, 19617. V=

Let V = v/v,. Then
K/K, = —V dP/dV (6)

CoaprEssIoN EqQuaTioN

=P L - ad ]
R erre—

The next task is to relate the volume » to the

(8
‘ressure, subject to equation 2 and the defini-  The evaluation of the integral in the expres-
v of the bulk modulus sion above, subject to ¥V = 1 when P = 0

K = —vdp/dv (5) (Givenin Appendix B), gives us

o a
N {\:ml’g +(1+ A+ amP + a]

.[-Mm -+ 2"1}’[((,)”2 4+ + A+ am)] :I(l+.4—am)/(n)”'}ll2m ©
d4am — 2mPl(9)"* — (1 + A + am)]
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0.9+
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0.8

Ko = 2504.1 KBARS

0.7 L 1 1 1 | L

ALUMINUM OXIDE

ISOTHERMAL COMPRESSION 1
o[HART AND DRICKAMER, I965]

SHOCK -WAVE COMPRESSION
[McQUEEN AND MARSH, 1966]

(' POLYCRYSTAL )
4 SINGLE CRYSTAL

(o} 500

1000

PRESSURE (KBARS)
Fig. 2.

Figures 2-7 give a comparison of extrapolated and measured values of volume ratio v/vo
versus pressure for aluminum oxide, a-quartz, magnesium, potassium, sodium, and lead; the
curves are marked with the numbers of the extrapolation formulas given in the text.

where ¢ = (1 + A + am)® — 4am.

For the case C = K,K,” = 0, the integra-
tion of the expression for the bulk modulus
(equation 7 with 4 = 0 and m = K/) leads
to the ‘extrapolation formula’ for ¥V due to
Murnaghan [1944]

V =[1+ K,/P]7"*’ (10)

REsuLTs oF CALCULATIONS

The results of the caleulations based upon
equations 9 and 10 for aluminum oxide, a-
quartz, magnesium, potassium, sodium, and lead
are compared with experimental data in Fig-
ures 2-7. In these figures the solid curve is a
plot of equation 10, whereas the dashed curve
refers to equation 9. The additional solid eurves,
labeled Cla and C2a, are derived from the ex-
ponential formulas discussed in Appendix C.

The calculations were based on values of K,
and K compiled by Awderson [1066]. These

are listed in Table 1. For equation 9, m = §/3
was chosen for €' < 0, whereas for C > 0 the
approximation given by equation 4 was used to
determine m; the value of K,” was chosen (by
trial and error) to provide reasonable agreement
with the experimental compression data. The
sources of the data are cited in the figures.

An error in K will clearly affect the apparent
value of K,” needed for a good fit. For thi
reason, it is important to have a reliable value
of K, before any confidence can be placed in
an estimate of A,”. For example, a relatively
small error in K,” may very well account for thr
unexpected difference (in sign of K”) between
sodinm and potassium. Similarly, taking ac-
count of a possible difference in K, between
raonocrystalline and polyerystalline aluminum
oxide would be very likely to affect the conclu-
sions concerning C.

For aluminum oxide, a-quartz, and magnesinm
(Figures 2-4), the disparity between the ex-
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.wmental data permits the choice of C to vary
aderably. In the case of aluminum oxide
- 45 and C = —15 would provide a
.onable fit of the single-crystal and poly-
<l shock wave data, respectively. We have
on 0= =5(K” = —2 X 10™ em®/dyne)
represent an average fit, but we certainly
4ld not attach any particular significance to

. choice of C in view of the available data,
Il scem to indicate that the single-erystal
| polverystal behave somewhat differently.
. 1his case the caleulated curves are based on
. " determined from the ultrasonic data for
lverystalline material. For a-quartz C = 10
KN = 27 X 10™ em®/dyne) provides a rea-
nible fit of the shock wave data, whereas the
chi-pressure isothermal data suggest a smaller

value of C for a fit. For magnesium, Figure 4,
C = =2 (K)” = =58 X 10" em*/dyne) ac-
commodates the scatter between the high pres-
sure izothermal eompression data.

The calenlated curve for potassium (Figure
5) shows good agreement with experimental
data by picking ¢ = —06 (K,” = —178 X
10 em®/dyne). Strangely, a positive value of
C' was required to fit the experimental data of
the other alkali metal, sodium. In Figure 6 the
caleulated curve for sodium with € = 15
(Ky” = 243 X 107 em®/dyne) provides a very
good fit of the experimental data to high pres-
sures.

In Figure 7 the agreement between calculated
alld experimental data for lead is quite good
over the entire pressure range for a value of

§ 1.00
i Q-QUARTZ
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i o[McWHAN, 1967]
i o e a[BRIDGMAN, 1948q, b]
B SHOCK-WAVE COMPRESSION
0.95 o [WACKERLE, 1962] 3
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1.0
MAGNESIUM
ISOTHERMAL COMPRESSION |
i o [CLENDENEN AND DRICKAMER, 1964]
e [DRICKAMER ET. AL.,1966]
4 [BRIDGMAN, 19484
09 B ]
SHOCK-WAVE COMPRESSION ]
o[RICE, McQUEEN AND WALSH, t95§]
2 u ) (Cla)
< 0.8
> N \:\
o SN (9)
L N - /—C=+2
\: - (10)
Ko=344.04 KBARS ~ka
R4 (c2a) LN
S
c=-2
0.6 1 1 1 i | L ! L A L 1 1 1
0] 100 200 300
PRESSURE (KBARS)
Fig. 4.
C = —2, corresponding to K,” = —+.8 x 107  sults based on a quadratic approximation to the

em®/dyne. In spite of the impressive agreement,
it should be mentioned that a phase transition
at about 160 kb makes questionable any extra-
polation from the low-pressure region into the
high-pressure region.

The effect of varying m is shown in Figure S
where we have plotted the caleulated curves
for aluminum oxide out to 5000 kb. Using values
of m equal to 1, 2, and 3, equation 9 is plotted
for ¢ = —1. In addition, we have plotted
the curves for m = 42,52,62, and C = +1.0.
One can readily observe that the six curves are
distinguizhable only for extreme pressures. Also,
as C - 0 for given K,/ and m, either a — =
or K,/ = m, and in both cases the limiting
expression for K/K, becomes independent of m.
We may therefore conclude that the value of
m does not appreeiably affect the volume cal-
culation when [C] is small.

As a final point of interest, Figure 9 com-
pares typiecal results from equation 9 with re-

bulk modulus, given by

B =1+ K/P + iCP’

K,
The extrapolation formula predicted by th
quadratic approximation is obtained in a man-
ner similar to that given in Appendix B for
equation 7. That is

_ [_f dP ]
exp 3P F K P F 4

={[CP + K, 4+ @®'"*lK) — (r)l/2]}| G
[CP + 1\’“, - (T)llg][Ku’ ~+ (")‘/2] (ll

Vv

where r = (K/)* — 2C > 0. For r = 0 an’ |

r < 0 the volume equation becomes

2 2
7 = ex —_— — — lu
V= exp (CP + K, Ko') (1

and

|
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é w{ . [t‘m"' B “exp |: 2 tan”" T .

‘f (BN (—r)l/?' e (_r)l/z X} (_r)1/2 B (_r)l/z (_r)l/‘.’
£SSION | i = 3 ively: o5 P evertheless: thes
| r i L CP + K P respectively, as —> . .\evertheless, these
) DRICKAMER, '96,4] ; — tan l———(_r)n’_‘/zu (118)  equations usually predict reasonable behavior
AL.,I1966] i - ) beyvond the range of experimental data. The
al peetivedy. \\’e note from the figure that b‘?‘h behavior predicted by this quadratic approxi-

wens pr.ethct» similar values of COMPpressIon — mation to the bulk modulus has been discussed
RESSION ¢ considerable pressure range. ¥0r Negi- also hy Macdonald [1969] in a recent review
AND WALSH, 1958 + values of C, equation 11 exhibits an in- 1410 on equations of state.
son point, corresponding to the maximum .
| aeof K at the positive pressure P = —K,/,'C, AprENDIX A. SoME OTHER POSSIBILITIES
{ at another finite positive pressure There are many expressions that may be
— K, + () suitable for representing the bulk modulus as
P = - —J'—C————- a function of pressure. To put equation 2 in a
(9) more general setting, we write
/' ehha « bulk modulus and volume are both zero. In
Q : g sitive v ions d(K/K a a
- (10) | Ilition, for positive \allfes.of C, equations 11, (K/K,) R TS L @D
S 1, and 11b tend to the limits apr P+a (P+a
~ i
Wt i Ky — ()" 1/(r)1/s 2 When one solves for @; and a. in terms of K/,
0
: [W] y exp | — £’ C, m, and a, the results are
L a, = a’C + 2a(K," — m) (A2)
1.0
300 POTASSIUM
ISOTHERMAL COMPRESSION
o © [BRIDGMAN, 1948a, b]
a [MONFORT AND SWENSON, I965]
SHOCK-WAVE DATA )
a quadratic approximation to* 0.8 o [RICE, McQUEEN AND WALSH, 195 ].«
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that given in Appendix P~
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- 2 -/ 1/2 L]
o' — () "lK + (0] '
/) — 2C > 0. Forr =0 | Ko = 33.8KBARS
ame equation becomes §
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Fig. 5.
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1.0
SODIUM
ISOTHERMAL COMPRESSION
e[BEECROFT AND SWENSON, 1961]
oa[BRIDGMAN, 1948a, b]
SHOCK—-WAVE COMPRESSION
0.8 o[RICE, 1965]
(Cla)
L o
Q
(o]
3 \u~o
T~
S (9)
\a\ c=1.5
B N [
e~L_
T ——c
(10)
0.4
Ko=61.8 KBARS
(C2aq)
-
0.2 | | 1 | |
0 100 200 300
PRESSURE (KBARS)
Fig. 6.
_— e 3 = 2z r > >
a, a'C — a’'(K, m) (A3) d(K/Ko) _ o @ (A4
dP (P + a)

If C satisfies equation 3, then ¢, = 0 and a, =
a’(Ky — m), in which case equation Al reduces
to equation 2. Having an additional parameter,
equation Al has considerably more freedom, as
manifested by the fact that C and (Ky — m)/a
can be varied independently. For example, one
can have m = K, with C 4 0 or C = 0 with
m = K. A possible method of use of equation
Al would be to choose two parameters sensibly
but somewhat arbitrarily, say m = 4and a = 1,
determine K, and C for fitting to data, and
then use the formula for the purpose of extra-
polation.

Equation Al will be recognized as part of a
Laurent series. One may also consider a more
general term of the form a.(P + a)™. For ex-
ample, we could write

Equation 2 then appears as the special case

which n = 2. The special case n = 1 is also !

special case of (Al) in which a; = 0. Wit!
n=1a=1/K/,and ¢y = 1 —(m/K/), equ:-

tion A4 gives the result of substituting th

AMMurnaghan expression for K/K, into the right-

hand side of the Keane equation, equation 1.
Some other possibilities are

d(K/K,) _ b .
P -t eid G

and

d(K/K) _ ¢ (i

P ~"tTEF)ile®P+o

\pPENDIX B. EXTRaror
COMPRESSION FRi)

By replacing dP in equ

¢ o see that it is of the fon

B -

TS ——

Ve |-

The integral in the expon:

‘l—b In (b2 + cx + d) —

vhere

0.8

V/ Vo
T

0.7+
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ureNpix B, ExTraroratioN Fuu.\n;'b,\ FOR b= m, -
COMPRESSION FROM INQUATION 7

c=014+ 4 — am)

ON iy replacing dP in equation 8 with d(P + a),

INSON, 1961] -ce that it is of the form d= —ad

{ION ¥ = @ [_ =z dz ] In writing the expression for
b 4+ cx + d

300

a, )
1 m+(P+(l)" (.\'
ears as the special cusc
ecial case n = 1 is also 1/

in which @ = 0. Wu
da =1—(m/K/), eq:
result of substituting !
n for K/K, into the vzl
me equation, equation !
ities are

_b
g (P + a

‘ L (A
'+ a) log (P + 0

e integral in the exponent is

‘lv- In (bz® + cx + d) —

viere

i dr
./ bz* + ez + d (B2)

it is of interest to know the sign of ¢ = ¢* —

c dx
Qbf bz® + cx + d 4bd; that is, we have ¢ = (1 + 4 — am)® +

4amA > 0 if a, A, and m are all positive. This
is the usual case since ordinarily (K/ — m) >
0 and C = (K/K,),” < 0, and this requires

(B1)

0.9

LEAD

ISOTHERMAL COMPRESSION
o [BRIDGMAN, 1945]

SHOCK-WAVE COMPRESSION
o [McQUEEN AND MARSH, 1960]

0.8

V/Vg
T

Ko=416.0 KBARS

| | |

0 200

400 600 800 1000 1200 1400
PRESSURE (KBARS)

Fig. 7.
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TABLE 1. Data g = (1 4+ A — am)2+ 4am4d
Material Ky, kb K¢ =1+ A+ am)’ — 4am (I
and
a-Si0, 371.25 6.33 g -
ALO, 2504.1  4.00 2brte=2mP+a+ 1+ 44— am
Mg 344.04 4.07 _ B
K 33’8 3.08 14+ A+ am) + 2mP
Na 61.8  3.59 Clearly, for C < 0, (¢)"* < (1 + A + am
Pb 416.0 6.30

therefore 2bz + ¢ > (g)** for all P > . |,

this case equation B2 is appropriately writt.
in the logarithmic form

a > 0 and 4 > 0 (equation 3). For the case
(KY — m) < 0 the parameters ¢ and 4 are
of opposite sign, and ¢ is clearly > 0. We also
need to know whether 26z + ¢ > (g)*°. To

answer this question, note that

(9"*

1.0
AZ,05
i Ko = 2504.1 KBARS
Kg = 4.0
0.9+
}—
0.8
zc:: i Eq.(9)
3 C=+l
0.7 C=-I
L m=6.2
5.2
4.2
0.6
m=|
F 2
3
0.5 L | | L | | | 1
0 I 2 3 4 5
x 103

Fig. 8. Effect of varying

PRESSURE (KBARS)

oxide,

Lo [(1 + A+ am) 4+ 2mP — (y)’ =}
(1 4+ A + am) + 2mP + (o)~

(B

m on extrapolated values of v/v, versus pressure for aluminum

yanswer the ques|
we write equa!
K —m),a = ]

— 2(K|)’

{ - = [l y
- [1 4 2K

e note that botl:
mare root of the |
ression are  positiy

; i)V for all P >
zirithmie form (
{ pation B2.

After having ev::
wn Bl, for both ca
"= 0 we then writ:
‘on 9).

Av

|

As has been emph

lie suceess of Murn:

ticnlar because the 1,!
/K, is determined

\loreover, this para:

08

286

04 =

e

o2f-

o ST
0 2

2.9. Comparison ©
C =5




—am)® + dam .

+ (lm)2 — dam

P a4 A

- A+ am) + 2mpP

0, ()" < (1 4+ 4+ .
2> (@) forall P >
- B2 is appropriately w;
form

+ am) + 2mP — ()’
+ am) 4+ 2mP + ()

t

X 103

yressure for aluminun

o e A3 TN A 4 A s A O AOSP 41
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.wer the question for C > 0, (K — m) <
write equation B3 for ¢ with 4
s —m),a = —2(KS — m)/C:

2K, — m)* _ 2m(Ky — m)

[1_
1+

c

* c

)

2K0’(m — Ky')

20.9
=

Sm(Ko' == m)

_ Sm(m e Ko')

c

(B

5)

note that both the second term and the
e oot of the first term in the above ex-
ion are positive; therefore, 2bz 4+ ¢ >
“for all P > 0,-and we again use the
rithmiec form (Equation B4) to evaluate

ition B2,

\iter having evaluated the integral, equa-
1 B1, for both cases subject to ¥V = 1 when
- 0 we then write the equation for V (equa-

19).

ArpeEnDIX C

\s has been emphasized by Anderson [1966],
- success of Murnaghan’s equation 10 is spee-
ilar because the entire curve of K/K, versus
K, is determined by a single parameter K,
rcover, this parameter is not adjusted to fit

* e

'
Ky =40
N
RS Eq
S~ C=+1
e, e S
NN e, TEmme———d
N
N C:tl.m-q 2
\\ Ca ;
~. X 2
.o M=5/3
£qUD ~ EQ(9)
c=-1 \
\
\
\
\
1
1 1 Il 11
2 4 6 8 10
p/Ko

% Comparison of extrapolation formulas for

C = =1 (see text).
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[Ke]

- ~

Kg = 40

EXPONENTAL BULK

2 ol MODULUS (C1)
3
L LINEAR BULK
MODULUS (EQ.10)
i EQUATION (C2)
; 1 ; 1 PR " L "
0'60 0.2 0.4 0.6 0.8 1.0
p/Kg

Tig. 10. Comparison of extrapolation formulas
based on the linear and exponential assumptions
for the bulk modulus (see text).

all the data, but only the low pressure ultra-
sonic data on wave transit times versus p. (This
is presumed to give, after ecalculations using
thermal data to convert from adiabatic to iso-
thermal values of dK/dp, the true limit of
dK/dp as p = 0.) It was desired to see whether
a one-parameter fit (in which the parameter
is the initial value of dK/dp) is sensitive to
the assumption of exact linearity of K. To gain
some insight into this question, we have com-
pared V predicted from the linear assumption
(given by equation 10) with V predicted from
each of two exponential formulas.

K KO'P)
——-Ko exp-( K, (Cy)
K _ Ko’P)
o exp ( X (C2)

With K given by equation 6 the above expres-
sions can be integrated to obtain the required
formulas for the volume ratio. From (C1),

V= exp{Kl,
0

and from (C2)

1 K 1

. {_Ko’ [‘“ K T2
X (K 1o
K, \K, K
The assumption (C2) leads to the above pair
of equations C2a, from which ealeulations can

[exp (— K,'P) — I]} (Cla)

(7T

(C2a)

14

P
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be made by picking values of K/K, and cal-
culating the corresponding values of V and P.
It is, of course, possible, by eliminating K/K,,
to obtain a formula connecting P and V di-
rectly. The result is

S s
P = F e
! (C2b)

K ) 1) 1/2
— oOR ! il
7 1+[1+-l\0 111(1,]

S§=Ih—=

If K/ = 0 the linear, quadratic, and exponen-
tial equations reduce to K = K, vielding the
same limiting function

YV =

exp (—P) (C3)

It should be noted, however, that equations
10, 9, and C2a lead to the limiting behavior
V — 0 as P = o0, whereas equation Cla un-
realistically predicts V — exp(—1/K/).

The results of calculations based on the linear

and two exponential assumptions are plotted in
Figure 10 for the case K,/ = 4, a typical value.
At P = 1, the values of ¥V are 0.671, 0.785, and
0.618 from (10), (C1), and (C2), respectively.
On the other hand, the values of K itself are
respectively 5K, 54.5K,, and 3.33K,. It must
be concluded that comparison of volume ratios
(or density ratios) in the range 0 < p/K, < 1
is not a highly sensitive test of the behavior of
the bulk modulus. This is to be expected, of
course, because the volume changes are rela-
tively small. Nevertheless, it seems worthwhile
to emphasize this point because of the large
changes in K that can possibly accompany
small changes in the density.

We remark that even crude measurements
of wave velocity in a material that is initially
compressed to say 0.8 of its original volume
should give more information concerning the
behavior of the bulk modulus than can be ob-
tained from relatively precise volume measure-
ments, '

As further illustrations, caleulations based on
the exponential assumptions for e-quartz, alumi-
num oxide, magnesium, potassium, sodium, and
lead are added to Figures 2-7. It is certainly
clear that a linear pressure dependence of the
bulk modulus gives better agreement than an
exponential one.
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